2024-11-04 10:05:02
氧化石墨烯表面含有-OH和-COOH等丰富的官能团,在水中可发生去质子化等反应带有负电荷,由于静电作用将金属阳离子吸附至表面;相反的,如果水中pH等环境因素发生变化,氧化石墨烯表面也可携带正电荷,则与金属离子产生静电斥力,二者之间的吸附作用**减弱。而静电作用的强弱与氧化石墨烯表面官能团产生的负电荷相关,其受环境pH值的影响较明显。Wang44等人的研究证明,在pH>pHpzc时(pHpzc=3.8),GO表面的官能团可发生去质子化反应而带负电,可有效吸附铀离子U(VI),其吸附量可达到1330mg/g。氧化石墨能够满足人们对于材料的功能性需求更为严苛的要求。常规氧化石墨怎么用
与石墨烯量子点类似,氧化石墨烯量子点也具备一些特殊的性质。当GO片径达到若干纳米量级的时候将会出现明显的限域效应,其光学性质会随着片径尺寸大小发生变化[48],当超过某上限后氧化石墨烯量子点的性质相当接近氧化石墨烯,这就提供了一种通过控制片径尺寸分布改变氧化石墨烯量子点光响应的手段。与GO类似,这种pH依赖来源于自由型zigzag边缘的质子化或者去质子化。同样,这也可以解释以GO为前驱体通过超声-水热法得到的石墨烯量子点的光发射性能,在蓝光区域其光发射性能取决于zigzag边缘状态,而绿色的荧光发射则来自于能级陷阱的无序状态。通过控制氧化石墨烯量子点的氧化程度,可以控制其发光的波长。这一类量子点的光学性质类似于GO,这说明只要片径小于量子点,都会产生同样的光学效应,也就是在结构上存在一个限域岛状SP2杂化的碳或者含氧基团在功能化过程中引入的缺陷状态。单层氧化石墨生产企业修复石墨烯片层上的缺陷,可以提高石墨烯微片的碳含量和在导电、导热等方面的性能。
氧化石墨烯(GO)与石墨烯的另一个区别是在吸收紫外/可见光后会发出荧光。通常可以在可见光波段观测到两个峰值,一个在蓝光段(400-500nm),另一个在红光段(600-700nm)。关于氧化石墨烯发射荧光的机理,学界仍有争论。此外,氧化石墨烯的荧光发射会随着还原的进行逐渐变化,在轻度化学还原过程中观察到GO光致发光光谱发生红移,这一发现与其他人观察到的发生蓝移的现象相矛盾。这从另一个方面说明了氧化石墨烯结构的复杂性和性质的多样性。
近年来研究者发现石墨烯由于它独特的零带隙结构,对所有波段的光都无选择性的吸收,且具有超快的恢复时间和较高的损伤阈值。因此利用石墨烯独特的非线性可饱和吸收特性将其制作成可饱和吸收体应用于调Q掺铒光纤激光器、被动锁模光纤激光器已经成为超快脉冲激光器研究领域的热点。2009年,Bao等[82]人使用单层石墨烯作为锁模光纤激光器的可饱和吸收体首先实现了通信波段的超短孤子脉冲输出,脉冲宽度达到了756fs。他们证实了由于泡利阻塞原理,零带隙材料石墨烯在强激光激发下可以容易的实现可饱和吸收,而且这种可饱和吸收是与频率不相关的,即石墨烯作为可饱和吸收体可实现对所有波长的光都有可饱和吸收作用。石墨烯以优异的声、光、热、电、力等性质成为各新型材料领域追求的目标。
氧化石墨烯同时具有荧光发射和荧光淬灭特性,广义而言,其自身已经可以作为一种传感材料,在生物、医学领域的应用充分说明了这一点。经过功能化的氧化石墨烯/还原氧化石墨烯在更加***的领域内得到了应用,特别在光探测、光学成像、新型光源、非线性器件等光电传感相关领域有着丰富的应用。光电探测器是石墨烯问世后**早应用的领域之一。2009年,Xia等利用机械剥离的石墨烯制备出了***个石墨烯光电探测器(MGPD)[2],如图9.6,以1-3层石墨烯作为有源层,Ti/Pd/Au作源漏电极,Si作为背栅极并在其上沉淀300nm厚的SiO2,在电极和石墨烯的接触面上因为功函数的不同,能带会发生弯曲并产生内建电场。碳基填料可以提高聚合物的热导率,但无法像提高导电性那么明显,甚至低于有效介质理论。常规氧化石墨怎么用
氧化石墨烯(GO)是印刷电子、催化、储能、分离膜、生物医学和复合材料的理想材料。常规氧化石墨怎么用
目前医学界面临的一个棘手的难题是对大面积骨组织缺损的修复。其中,干细胞***可能是一种很有前途的解决方案,但是在干细胞的移植过程中,需要可促进和增强细胞成活、附着、迁移和分化并有着良好生物相容性的支架材料。研究已表明氧化石墨烯(GO)具有良好的生物相容性及较低的细胞毒性,可促进成纤维细胞、成骨细胞和间充质干细胞(mesenchymalstemcells,MSC)的增殖和分化[82],同时GO还可以促进多种干细胞的附着和生长,增强其成骨分化的能力[83-84]。因此受到骨组织再生领域及相关领域研究人员的关注,成为组织工程研究中一种很有潜力的支架材料。GO不仅可以单独作为干细胞的载体材料,还可以加入到现有的支架材料中,GO不仅可以加强支架材料的生物活性,同时还可以改善支架材料的空隙结构和机械性能,包括抗压强度和抗曲强度。GO表面积及粗糙度较大,适合MSC的附着和增殖,从而可促进间充质干细胞的成骨分化,而这种作用程度与支架中加入GO的比例成正比。常规氧化石墨怎么用